If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+7x-2=0
a = 36; b = 7; c = -2;
Δ = b2-4ac
Δ = 72-4·36·(-2)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{337}}{2*36}=\frac{-7-\sqrt{337}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{337}}{2*36}=\frac{-7+\sqrt{337}}{72} $
| (3x)/2=6x-12 | | m+6/26=1 | | 2=n/9+1 | | 4(x+1)=9x+2-5x+2 | | -1+k/5=3 | | 3x/2=6x-12 | | 5n^2-70=0 | | 8=1/3(6x+12) | | 7(n-3)=-14 | | 130=10(m-1) | | 4x-1+2x=4x-4 | | a+4.75=1.85 | | 23=-9-8x | | 11x^2-23x+2=0 | | 1.30=6.50m | | 14,400=1600t-16t^2 | | -14+6x+7-2x=3x+1+2x | | 3(7+3n)=75 | | 2/4-t=7 | | 7/3z=21 | | 7x+38=8x+32 | | 10=-2/5x | | 52/3x+5/3=-52/15 | | 9•=11a | | 8-39(p-4)=2p | | -4x-(-9)=25 | | 1/4-t=8 | | 40x-18+3x=32(5+x) | | 10-d=-12 | | 5(x+1)-3x=11 | | 56+21x=98 | | 10+d=-12 |